The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Поиск:  Каталог документации | Other

Ada FAQ: Programming with Ada (part 1 of 4)

Ada Programmer's Frequently Asked Questions (and answers), part 1 of 4. Please read before posting.
Archive-name: computer-lang/Ada/programming/part1
Comp-lang-ada-archive-name: programming/part1
Posting-Frequency: monthly
Last-modified: 22 May 1996
Last-posted: 23 April 1996

                               Ada Programmer's
                       Frequently Asked Questions (FAQ)

   IMPORTANT NOTE: No FAQ can substitute for real teaching and
   documentation. There is an annotated list of Ada books in the
   companion comp.lang.ada FAQ.

    Recent changes to this FAQ are listed in the first section after the table
    of contents. This document is under explicit copyright.

This is part 1 of a 4-part posting; part 1 contains the table of contents.
Part 2 begins with question 5.
Part 3 begins with question 6.
Part 4 begins with question 9.
They should be the next postings in this thread.


Introduction

   Ada is an advanced, modern programming language, designed and
   standardized to support and strongly encourage widely recognized
   software engineering principles: reliability, portability, modularity,
   reusability, programming as a human activity, efficiency,
   maintainability, information hiding, abstract data types, genericity,
   concurrent programming, object-oriented programming, etc.

   All validated Ada compilers (i.e. a huge majority of the commercial
   Ada compilers) have passed a controlled validation process using an
   extensive validation suite. Ada is not a superset or extension of any
   other language. Ada does not allow the dangerous practices or effects
   of old languages, although it does provide standardized mechanisms to
   interface with other languages such as Fortran, Cobol, and C.

   Ada is recognized as an excellent vehicle for education in programming
   and software engineering, including for a first programming course.

   Ada is defined by an international standard (the language reference
   manual, or LRM), which has been revised in 1995. Ada is taught and
   used all around the world (not just in the USA). Ada is used in a very
   wide range of applications: banking, medical devices,
   telecommunications, air traffic control, airplanes, railroad
   signalling, satellites, rockets, etc.

   The latest version of this FAQ is always accessible through WWW as
   http://lglwww.epfl.ch/Ada/FAQ/programming.html#title

Maintenance

   This FAQ is maintained on an individual volunteer basis, by Magnus
   Kempe ([email protected]). [Note: This is done as a hobby, not
   in my capacity as an employee at the Swiss Federal Institute of
   Technology. --MK]

   The coding style used in most of the example Ada code is my own, and
   you'll have to live with it (you may want to adopt it :-).


     _________________________________________________________________

   Opinions (if any) expressed are those of the submitters and/or
   maintainer.
     _________________________________________________________________

Table of Contents:

     * 1: Recent changes to this FAQ

     * 2: Information about this document

     * 3: Elementary Questions
          + 3.1: How do I make operations directly visible without
            "use"ing a package?
          + 3.2: How do I assign to an array of length 1?
          + 3.3: How do I create a C-style nul-terminated string?
          + 3.4: How can I create an array of strings of various length?
          + 3.5: I know an exception is raised, but my program quits with
            no warning. Why?
          + 3.6: I have only one task in my program, but it doesn't seem
            to run. Why?
          + 3.7: How do I increase the stack size for a task?
          + 3.8: What's the difference between a type conversion and a
            qualifier?
          + 3.9: How do I avoid the potential space in front of
            Integer'Image?
          + 3.10: Why is an exception raised when giving a default
            discriminant?
          + 3.11: When I want an Integer type, what's wrong with just
            using the predefined type Integer or Long_Integer? Why would
            I ever want to declare new Integer types?
          + 3.12: Since I can always declare my own portable integer
            types, why would I ever want to use the predefined type
            Integer?
          + 3.13: I am learning Ada. Can I experiment with a game
            program?
          + 3.14: How can I do a non-blocking, keystroke-at-a-time read
            from the terminal?


     * 4: Advantages of Ada
          + 4.1: Why use Ada?
          + 4.2: Ada seems large and complex, why is it this way?
          + 4.3: Is there a contest with fame and money for good Ada
            programmers?


     * 5: Object-Oriented Programming with Ada
          + 5.1: Why does Ada have "tagged types" instead of classes?
          + 5.2: Variant records seem like a dead feature now. When
            should I use them instead of tagged types?
          + 5.3: What is meant by "interface inheritance" and how does
            Ada support it?
          + 5.4: How do you do multiple inheritance in Ada 9X?
          + 5.5: Why are Controlled types so, well, strange?
          + 5.6: What do "covariance" and "contravariance" mean, and does
            Ada support either or both?
          + 5.7: What is meant by upcasting/expanding and
            downcasting/narrowing?
          + 5.8: How does Ada do "narrowing"?
          + 5.9: What is the difference between a class-wide access type
            and a "general" class-wide access type?


     * 6: Ada Numerics
          + 6.1: Where can I find anonymous ftp sites for Ada math
            packages? In particular where are the random number
            generators?
          + 6.2: How can I write portable code in Ada 83 using predefined
            types like Float and Long_Float? Likewise, how can I write
            portable code that uses Math functions like Sin and Log that
            are defined for Float and Long_Float?
          + 6.3: Is Ada any good at numerics, and where can I learn more
            about it?
          + 6.4: How do I get Real valued and Complex valued math
            functions in Ada 95?
          + 6.5: What libraries or public algorithms exist for Ada?


     * 7: Efficiency of Ada Constructs
          + 7.1: How much extra overhead do generics have?
          + 7.2: How does Ada compare to other languages in efficiency of
            code?


     * 8: Advanced Programming Techniques with Ada
          + 8.1: How can I redefine the assignment operation?
          + 8.2: Does Ada have automatic constructors and destructors?
          + 8.3: Should I stick to a one package, one type approach while
            writing Ada software?
          + 8.4: What is the "Beaujolais Effect"?
          + 8.5: What about the "Ripple Effect"?
          + 8.6: How to write an Ada program to compute when one has had
            too much alcohol to legally drive?
          + 8.7: Does Ada have macros?


     * 9: Ada and Other Programming Languages
          + 9.1: Where can I find programs that will translate from [some
            language] to Ada?
          + 9.2: How can I convert Ada 83 sources to Ada 9X?
          + 9.3: I hear that Ada is slower than Fortran or C, is that
            true?
          + 9.4: Isn't Ada less "elegant" than Eiffel?
          + 9.5: Are there any papers detailing the differences between
            Ada and C++?
          + 9.6: I keep hearing that Ada is a "strongly typed language",
            but it seems different from what's meant in C++. Are they
            different?
          + 9.7: I'm told Ada does all sorts of static type checking, but
            can't you get the same effect using a tool like "lint" with
            C?
          + 9.8: Does Ada have something like the Standard Template
            Library (STL) in C++, or like the components one finds in
            Smalltalk environments?
          + 9.9: Where can I find the equivalent of "printf" in Ada?


     * 10: Interfacing with Ada
          + 10.1: I am writing software that used the Distributed
            Interactive Simulation (DIS) interface, does an interface
            exist in Ada?
          + 10.2: Is there any support for Common Object Request Broker
            Architecture (CORBA) for Ada 9X?


     * 11: Finding Additional Information
          + 11.1: Where can I find Ada books?
          + 11.2: Are there other Ada-related FAQs?
          + 11.3: What is the "HBAP WWW Server"?


     * 12: Pretty-printing and Measuring Ada Source Code
          + 12.1: Is there software that generates a pretty PostScript
            file from Ada source code?
          + 12.2: I use vgrind to do "pretty printing" of my source. Is
            there a vgrind definition for Ada?
          + 12.3: How about a source code reformatter?
          + 12.4: How can I count source lines of code (SLOC)?
          + 12.5: Can I measure other things?


     * 13: Credits

     * 14: Copying this FAQ


     _________________________________________________________________

1: Recent changes to this FAQ

     * 960522: "aimap" located (12.3).
     * 960320: comparing the efficiency of Ada and other languages (7.2)
       (submitted by D. Wheeler)
     * 960228: references for redefining the assignment operation (8.1)
       (switched questions 8.1 and 8.2).
     * 960130: another game written in Ada (3.13).
     * 960123: ARA contest for good Ada (4.3).
     * 950925: removed a couple of non-programming questions.
     * 950828: the change logs now indicate the section/question number.
     * 950819: non-blocking, keystroke-at-a-time reading (3.14).
     * 950819: some URL updates: AdaIC files keep moving around.
     * 950630: corrected answers on task switching (3.6) and conversion
       vs. qualifier (3.8).
     * 950517: "general" class-wide access type (5.9).
     * 950413: variant records vs. tagged types (5.2), submitted by
       K.═Shillington.
     * 950406: why Ada does not and should not have macros (8.7).
     * 950320: more on DIS (10.1).
     * 950315: Ada is good at numerics (6.3), by J.═Parker.
     * 950309: drinking and driving example (8.6).
     * 950306: added counting SLOC (12.4) and measuring (12.5).
     * 950222: fixed some typos.
     * 950207: revised introduction.
     * 950202: updated discussion of C++ STL and Smalltalk library (9.8).
     * 950126: advantages of code sharing for generics (7.1); Pascal to
       Ada tool (9.1).
     * 950125: why define new integer types (3.11), and why use the
       predefined Integer type (3.12), submitted by J.═Parker.
     * 950124: approved for posting in *.answers.
     * 950116: converting Ada 83 code to Ada 9X (9.2).
     * 950106: lengthy code sections extracted and put on FTP server.
     * 950105: printf solution (9.9); update on exception traces and
       vgrind.
     * 950104: links from TOC to all questions.


   What's important and missing:
     * everything, life, and 42


     _________________________________________________________________


2: Information about this document

   This file is posted monthly to comp.lang.ada, comp.answers, and
   news.answers.

   This document has a home on the Home of the Brave Ada Programmers
   (HBAP) WWW Server, in hypertext format, URL
   http://lglwww.epfl.ch/Ada/FAQ/programming.html

   It is available --as posted in *.answers-- on rtfm.mit.edu, which
   archives all FAQ files posted to *.answers; see
   ftp://rtfm.mit.edu/pub/usenet-by-group/news.answers/computer-lang/Ada

   The text-only version is also available in directory
   ftp://lglftp.epfl.ch/pub/Ada/FAQ

   Magnus Kempe maintains this document; it's a hobby, not a job.
   Feedback (corrections, suggestions, ideas) about it is to be sent via
   e-mail to [email protected]
   Thanks.

   In all cases, the most up-to-date version of the FAQ is the version
   maintained on the HBAP WWW Server. Please excuse any formatting
   inconsistencies in the posted version of this document, as it is
   automatically generated from the on-line version.

     _________________________________________________________________


3: Elementary Questions


3.1: How do I make operations directly visible without "use"ing the package?

   In Ada 83, you can rename the operations in your scope.

     -- Say you have an integer type called Int in package Types
     function "<" (Left, Right : Types.Int)
       return Boolean
       renames Types."<";
     -- Make sure the profiles of the first and last "<" match!


   For operators, Ada 95 introduces the "use type" clause:

     use type Types.Int; -- makes operators directly visible


3.2: How do I assign to an array of length 1?

   Because of ambiguity of parentheses, named notation must be used for
   one-element aggregates (or, under a different angle: a positional
   aggregate must have more than one component).

   See [RM9X 4.3.3(7)] as well as the syntax rule of
   positional_array_aggregate in [RM9X 4.3.3]; historians see [RM83
   4.3(4)].

     declare
       Array_of_One : array (1..1) of Float;
     begin
       -- Array_of_One := (10.0);   -- Won't work, parsed as an expression
                                    -- within parentheses

       Array_of_One := (1 => 10.0); -- No ambiguity here
     end;


   You can't write a one-element positional aggregate in Ada. Nor a
   zero-element aggregate. The reason for this restriction is that it
   would be difficult for compilers to determine whether:

     ( exp )

   is a parenthesized expression of some type, or an aggregate of an
   array type. If Ada had used some other notation for aggregates (say,
   "[...]"), then this problem would not exist.

   Apparently the original requirements for Ada forbade using certain
   ASCII characters, like '[' and ']', because those characters were not
   available on all hardware. Also, certain characters are used for
   different purposes and glyphs in countries that need additional
   letters not present in ASCII.


3.3: How do I create a C-style nul-terminated string?

   In a declaration block, append an ASCII.NUL to create a constant Ada
   string.

     declare
       Str_Nul : constant String := Str & ASCII.NUL;
     begin
       Call_Requiring_C_String (Str_Nul (Str_Nul'First)'Address);
     end;

-- or --

     function Nul_Terminate (Str : String)
       return String is
       Str_Nul : constant String := Str & ASCII.NUL;
     begin
       return Str_Nul;
     end Nul_Terminate;


3.4: How can I create an array of strings of various length?

   In Ada 83, you have to use string access types and "new" to get
   "ragged" arrays:

     type String_Access is
       access String;

     Strings : constant array (Positive range 1..3) of String_Access
             := ( 1 => new String'("One"),
                  2 => new String'("Two"),
                  3 => new String'("Three")
                );


   In Ada 95, the process is simplified by using aliased constants:

     type String_Access is
       access constant String;

     One : aliased constant String := "One";
     Two : aliased constant String := "Two";
     Three : aliased constant String := "Three";

     Strings : constant array (Positive range <>) of String_Access
             := ( 1 => One'Access,
                  2 => Two'Access,
                  3 => Three'Access
                );


3.5: I know an exception is raised, but my program quits with no warning. Why?


   On some Ada compilers, you have to manually "with" Text_IO before
   exception information is diplayed to the terminal.

   On other Ada compilers, you must set an environment variable flag in
   order to cause the exception information trace to be displayed.


3.6: I have only one task in my program, but it doesn't seem to run. Why?

   In Ada, the main procedure is automatically designated as a task. This
   task may be running forever, thus starving your other task(s), because
   round-robin scheduling (time-slicing) is not required (pre-emptive
   scheduling applies to tasks with different levels of priority).

   If the task in question is getting starved, it's a programmer problem,
   not an Ada problem. The programmer has to use an Ada compiler that
   supports pragma Time_Slice, or do the scheduling himself (by changing
   the implementation of his Ada program to ensure that no task starves
   another).

   One solution is to explicitly put the main task to sleep within a loop
   construct in order to avoid starvation of the other task(s), as in:

     procedure Main is
       task Test;
       task body Test is
       begin
         loop
           delay 1.0;
           Text_IO.Put_Line ("Test");
         end loop;
       end Test;
     begin
       loop
         delay 20.0;
         Text_IO.Put_Line ("Sleeping then writing");
       end loop;
     end Main;


3.7: How do I increase the stack size for a task?

   Define the task as a "task type" and then use a pragma representation
   clause.

     task type A_Task_Type;
     for A_Task_Type'STORAGE_SIZE use 10_000;
     -- 10K bytes allocated to instances of A_Task_Type
     A_Task : A_Task_Type;


3.8: What's the difference between a type conversion and a qualifier?

   Use a qualifier (tick) to tell the compiler what type it can expect;
   this is strictly a compile-time issue: a qualifier "hints" the type,
   usually to remove an ambiguity. Use a conversion to tell the compiler
   to convert an expression from one type to another (usually within one
   derivation hierarchy); this operation may require a change of
   representation at run-time (e.g. in case of a representation clause
   applying exclusively to the source type).

     A : Integer := Integer'(1);  -- this is a qualifier: same as ":= 1;"
     B : Integer := Integer (1);  -- this is a conversion


3.9: How do I avoid the potential space in front of Integer'Image?

   Use the function Trim from package Ada.Strings.Fixed (you can
   actually trim strings in many other useful ways):

     function My_Image (I : Integer)
       return String is
     begin -- My_Image
       return Ada.Strings.Fixed.Trim (Integer'Image (I), Ada.Strings.Left);
     end My_Image;

     ... My_Image (12) = "12" ...


   In Ada 83, code a function that accepts a string and strips the
   leading blank:

     function Strip_Leading_Blank (Str : String)
       return String is
     begin -- Strip_Leading_Blank
       if Str (Str'First) = ' ' then
         return Str (1+Str'First .. Str'Last);
       else
         return Str;
       end if;
     end Strip_Leading_Blank;

     ...

     function My_Image (I : Integer)
       return String is
     begin -- My_Image
       return Strip_Leading_Blank (Integer'Image (I));
     end My_Image;

     ... My_Image (12) = "12" ...


3.10: Why is an exception raised when giving a default discriminant?

   Let's assume you would like to model varying-length strings:

     type V_String (Size : Natural := 0) is
       record
         S : String (1 .. Size);
       end record;


   (from Robert Dewar)

   When you give a default discriminant, then one method (I actually
   think it is the preferred method) of implementation is to allocate the
   maximum possible length. Since your discriminant is of type Natural,
   this clearly won't work!

   GNAT may compile it, but it won't run it, and indeed I consider it a
   GNAT bug (on the todo list) that no warning is issued at compile time
   for this misuse.

   Some compilers, notably Alsys and RR, have at least partially "solved"
   this problem by introducing hidden pointers, but this to me is an
   undesirable implementation choice.

   First, it means there is hidden heap activity, which seems
   undesirable. In a language where pointers are explicit, it is
   generally a good idea if allocation is also explicit, and certainly
   for real-time work, hidden anything is worrisome.

   Second, it is not easy to do uniformly. Alsys ends up introducing
   arbitrary restrictions on the composition of such types (try making an
   array of them), and RR introduces non-contiguous representations,
   which are legal but troublesome.

   To "solve" the problem yourself, just declare a reasonable maximum
   length, and use a subtype representing this length as the subtype of
   the discriminant:

     Max_Length : constant := 200;

     subtype Index is
       Natural range 0 .. Max_Length;

     type V_String (Size : Index := 0) is
       record
         S : String (1 .. Size);
       end record;


3.11: When I want an Integer type, what's wrong with just using the predefined
type Integer or Long_Integer? Why would I ever want to declare new Integer
types?

   If you declare 2 distinct integer types, for example,

     type Data_Index        is range 1..100;
     type Time_Series_Index is range 0..2**15-1;


   then objects of type Data_Index can't be assigned (directly) to
   variables of type Time_Series_Index, and vice-versa. Likewise,
   variables of these 2 types can't be mixed in arithmetical expressions
   (without explicit type conversions). This may seem like a source of
   endless irritation, but on the contrary, good progammers use it to
   improve the clarity of their code, to make it more robust, and more
   portable. The first 2 examples discuss this. The third example
   discusses the declaration of machine-portable 32-bit integers.
   Declaring objects of type Integer can be highly non-portable, and of
   course type Long_Integer may not exist on some compilers.

    Example 1.

   Suppose you declare arrays using the above indices:

     type Time_Series is array (Time_Series_Index) of Float;
     type Y_Axis_Data is array (Data_Index)        of Float;

     Measurement : Time_Series;


   Now if you mistakenly try to iterate over one array with the index of
   the other, the compiler can catch the error at compile time:

     for I in Data_Index loop
        Sum := Sum + Measurement(I);  -- compilation error
     end loop;


    Example 2.

   This is lifted from Tucker Taft's brief introduction to Ada 95 in the
   contributed papers section of the Ada World Wide Web homepage. Here
   Tucker uses the Ada 95 unsigned integers, called modular types, in the
   implementation of a protected type, which defines a disk control unit.
   Modular types are integer types with "and", "or" and "xor" defined, so
   systems programmers are likely to use them as bit masks. Just as the
   array indices of the 2 arrays defined above are never meant to be
   mixed, the modular integer types used to implement the disk control
   unit are never meant to be mixed. To make sure the compiler enforces
   this, they are declared as distinct types:

     type Flags   is mod 2**4;  -- a 4-bit flags field
     type Control is mod 2**4;  -- A 4-bit control field

     Status_Mask  : constant Flags := 2#1001#;   -- Set first and last bits.
     Status_Ready : constant Flags := 2#1000#;   -- Status = Ready

     Start_Xfr    : constant Control := 2#0001#; -- Initiate xfr command


   Now if someone attempts to apply a Flag variable where a Control
   variable should be used (or vice-versa) the compiler will catch the
   error. This is especially important when the code is maintained by
   programmers who did not write it.

    Remarks on Examples 1 and 2.

   1. Notice that in both examples the programmer was able to state his
   intentions rather forcefully in the code - intentions that otherwise
   might have been expressed much less forcefully in comment statements.
   Because of Ada's strong typing model, the compiler was able to catch
   errors at compile-time when the programmer's intentions were violated.


   2. Notice also that the Integer declarations in the 2 examples are
   machine portable, unlike Integer and Long_Integer. A compiler will
   typically map these integer types onto the most efficient base type
   that is available on the target machine.

    Example 3.

   Although the examples given above are good ones, it is not necessarily
   a common practice to define a large number of distinct integer types.
   In many cases it is appropriate to use (say) a 32-bit integer (or a
   small number of such types) and declare appropriate subtypes of it
   (them). To declare a portable 32-bit integer (or more accurately, the
   most efficient integer that is at least 32-bits):

   type Int_tmp is range -2**31+1 .. 2**31-1;
   type Integer_32 is range Int_tmp'Base'First..Int_tmp'Base'Last;


   A compiler may reject this declaration if no suitable base type is
   available, but this is rare. What happens is this: in order to
   implement Int_tmp, the compiler chooses as the base type of Int_tmp an
   integer type that is available on the target machine. This base type
   is usually the most efficient integer that accomodates the range of
   Int_tmp, which in turn is usually the machine's 32-bit integer. (It
   might even be a 64-bit integer on some machines, in which case
   Integer_32'Size = 64, and Integer_32'Last = 2**63-1. Maybe we should
   not call it Integer_32!)


3.12: Since I can always declare my own portable integer types, why would I
ever want to use the predefined type Integer?

   The language itself provides some guidance here. The predefined type
   Integer is used by Ada in the implementation of a number of convenient
   services. The following examples describe some of these services.
   Notice that in most of the following examples, it is unlikely that it
   will ever matter whether or not the predefined type Integer is
   16-bits, 32-bits, 48-bits, or 64-bits.

   a) The exponentiation of X (written X**N) is defined by the language
   for any floating point or integer X, provided N is of type Integer. (N
   should be non-negative for integer X though.)

   b) Ada's predefined String type (really just a packed unconstrained
   array of characters) uses an index of subtype Positive (i.e. type
   Integer).

   c) The array index in the following "short-hand" array declaration is
   implicitly defined to be type Integer:

     A : array(10..40) of Float;


   d) The loop parameter I in the following for loop is implicitly
   declared type Integer:

     for I in 10..40 loop
      ...
     end loop;


   This application of type Integer is the one most likely to get you
   into portability trouble. If you write: "for I in 1..2**17 loop", then
   you get a constraint error on compilers that make Integer 16-bits,
   because 2**17 is out of range of any Ada 16-bit integer.


3.13: I am learning Ada. Can I experiment with a game program?

   Of course.

   The Public Ada library (FTP wuarchive.wustl.edu) has a portable Ada
   Tetris program in the languages/ada/misc/games directory. It uses
   tasking, keyboard input, and ANSI screen graphics. Have fun!

   There is also "program Small", a tiny text adventure program, that you
   can expand; it is documented at URL
   http://lglwww.epfl.ch/Ada/Tutorials/Lovelace/small.htm


3.14: How can I do a non-blocking, keystroke-at-a-time read from the terminal?

   Use the procedure Text_IO.Get_Immediate [RM95 A.10.7(11)].

   If you don't have an Ada 95 compiler but have a POSIX binding, there
   is a package using POSIX services that provides non-blocking,
   keystroke-at-a-time access to the terminal. It is available by FTP in
   file ftp://lglftp.epfl.ch/pub/Ada/FAQ/inkey.ada

     _________________________________________________________________

4: Advantages of Ada

4.1: Why use Ada?

   Think of it like this: We're the kid on the street corner, licking
   that tasty ice cream cone on a hot summer day; an impish grin
   decorates our face as we consume our cool confection. Meanwhile, other
   kids gather round, noticing our pleasure. It matters not a whit that
   they've just had a drink, or had their fill with supper -- they now
   want ice cream. We offer no lecture on how good the ice cream is, we
   simply demonstrate that we are happy, and let their memories carry
   them to the nearest ice cream truck.

   (Sorry, I got a little carried away --DW).


4.2: Ada seems large and complex, why is it this way?

   (Robert Dewar, lead designer of the GNU Ada compiler, responds):

   During the Ada 9X development process we have often had fierce
   arguments over the need to simplify proposals, and I pointed out some
   time ago that the idea of simplicity is heavily overloaded:
     * simple to implement
     * simple to describe informally
     * simple to describe formally
     * results in simple programs
     * simple to understand and/or remember
     * short to describe


   None of these goals are quite the same, and often they severely
   conflict.

   If you listen to programming language design types, especially from
   universities, they often have very little experience in programming,
   and especially little experience in writing large delivered,
   maintained software. That doesn't mean they know nothing about
   programming languages, but it does tend to mean that their view of
   complexity is skewed, and in particularly concentrates on the
   simplicity of the language itself, rather than on the simplicity of
   resulting programs.

   A lot of the creative tension in the 9X design process arose from this
   same fundamental dichotomy. The design team tended to have a high
   tolerance for language complexity (partly because they were very good
   at understanding language details), but had a lot of experience in
   actual large scale programming, and so their idea of simplicity was
   biased heavily to simplifying Ada programs. The opposite voice,
   worried about the simplicity of the language itself, represented by a
   section of the DR's and ISO group (who, being a larger more diverse
   group tended to reflect a wider view), considered that the design team
   had gone too far in this direction. If you want to get a feel for the
   transitions, look at the early versions of the 9X ILS, particularly
   version 1.0.

   In retrospect, I think we came up with what is at least very close the
   optimal balance. Tuck can speak for himself here more clearly than I
   can speak for him, but I would guess that he and the other members of
   the team recognize that you have to be able to sell the resulting
   design as an acceptably simple whole, and thus must step back from the
   most extensive proposals, while on the other hand, the more
   conservative KISS sentiments were convinced to accept more features
   than they originally felt comfortable with because of convincing
   programming examples and discussions of resulting programming
   complexity. The third wing of opinion ("I don't care what you think,
   but if we can't implement it, then it's not much use!") was also
   effectively fed in from the user-implementor teams.

   Is the result too complex? Time will tell, but I think the balance is
   a successful blend.


4.3: Is there a contest with fame and money for good Ada programmers?

   Yes, they should enter the Ada Lovelace Programming Contest sponsored
   by the Ada Resource Association (ARA).

   The Ada contest seeks to recognize the most readable, original,
   reusable, and clear working Ada programs. Like the Ada programming
   language, the contest is named in honor of the first programmer in
   history, Lady Ada Lovelace.

   Every three months, the ARA will pay US$ 750 to the best Ada code
   segment submitted. Submissions must be received by the 15th (midnight)
   of the "contest month" and the award will be announced at the end of
   the second month. A submission is made by emailing the source code to

        [email protected]

   The first contest closed December 15th, 1995. (The next contest month
   is March 1996.)

   The rules and guidelines of the contest are available from the Ada
   Contest WWW Home at http://lglwww.epfl.ch/Ada/Contest/announce.html

   This contest is open to all. Sharpen your designs, code, comments, and
   demos; show the world how good and unobfuscated your Ada code is, and
   win the prize!



Партнёры:
PostgresPro
Inferno Solutions
Hosting by Hoster.ru
Хостинг:

Закладки на сайте
Проследить за страницей
Created 1996-2024 by Maxim Chirkov
Добавить, Поддержать, Вебмастеру