NAME
cheev - compute all eigenvalues and, optionally, eigenvec-
tors of a complex Hermitian matrix A
SYNOPSIS
SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
RWORK, INFO )
CHARACTER JOBZ, UPLO
INTEGER INFO, LDA, LWORK, N
REAL RWORK( * ), W( * )
COMPLEX A( LDA, * ), WORK( * )
#include <sunperf.h>
void cheev(char jobz, char uplo, int n, complex *ca, int
lda, float *w, int *info) ;
PURPOSE
CHEEV computes all eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix A.
ARGUMENTS
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) COMPLEX array, dimension (LDA, N)
On entry, the Hermitian matrix A. If UPLO = 'U',
the leading N-by-N upper triangular part of A con-
tains the upper triangular part of the matrix A.
If UPLO = 'L', the leading N-by-N lower triangular
part of A contains the lower triangular part of
the matrix A. On exit, if JOBZ = 'V', then if
INFO = 0, A contains the orthonormal eigenvectors
of the matrix A. If JOBZ = 'N', then on exit the
lower triangle (if UPLO='L') or the upper triangle
(if UPLO='U') of A, including the diagonal, is
destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >=
max(1,N).
W (output) REAL array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) COMPLEX array, dimension
(LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal
LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >=
max(1,2*N-1). For optimal efficiency, LWORK >=
(NB+1)*N, where NB is the blocksize for CHETRD
returned by ILAENV.
RWORK (workspace) REAL array, dimension (max(1, 3*N-2))
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, the algorithm failed to con-
verge; i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |