The OpenNET Project / Index page

[ новости /+++ | форум | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

chpdi (3)
  • >> chpdi (3) ( Solaris man: Библиотечные вызовы )
  • 
    NAME
         chpdi - compute the determinant, inertia, and inverse  of  a
         Hermitian  matrix  A  in packed storage, which has been UDU-
         factored by xHPCO or xHPFA.
    
    SYNOPSIS
         SUBROUTINE ZHPDI (ZA, N, IPIVOT, DDET, INERT, ZWORK, JOB)
    
         SUBROUTINE CHPDI (CA, N, IPIVOT, SDET, INERT, CWORK, JOB)
    
    
    
         #include <sunperf.h>
    
         void zhpdi(doublecomplex *za, int  n,  int  *ipivot,  double
                   *det, int *inert, int job) ;
    
         void chpdi(complex *ca, int n, int *ipivot, float *det,  int
                   *inert, int job) ;
    
    ARGUMENTS
         xA        On entry, the UDU factorization of the matrix,  as
                   computed  by  xHPCO  or  xHPFA.  On exit, if the c
                   digit of JOB <> 0, then A contains the upper  tri-
                   angle  of  the  inverse  of the original matrix A;
                   otherwise unchanged.
    
         N         Order of the original matrix A.  N >= 0.
    
         IPIVOT    Pivot vector as computed by xHPCO or xHPFA.
    
         xDET      On exit, if the b digit of JOB <> 0, then DET con-
                   tains the determinant of the matrix A.  The deter-
                   minant is stored as b * (10 ** expon) where  b  is
                   stored  in  DET(1)  and expon is stored in DET(2).
                   1.0 <= |DET(1)| <= 10.0  or  DET(1) = 0.0.  If the
                   b digit of JOB = 0, DET is not referenced.
    
         INERT     On exit, if the a digit of JOB <>  0,  then  INERT
                   contains an integer triplet where:
                   INERT(1) = number of positive eigenvalues
                   INERT(2) = number of negative eigenvalues
                   INERT(3) = number of zero eigenvalues
                   If the a digit of JOB = 0 then INERT is not refer-
                   enced.
    
         xWORK     Scratch array with a dimension of N.
    
         JOB       Integer in the form abc; determines operation sub-
                   routine will perform:
                        a <> 0    Compute the inertia.
                        b <> 0    Compute the determinant.
                        c <> 0    Compute the inverse.
    
    SAMPLE PROGRAM
               PROGRAM TEST
               IMPLICIT NONE
         C
               INTEGER    IDODET, IDOINR, IDOINV, LENGTA, N
               PARAMETER (IDODET = 10)
               PARAMETER (IDOINR = 100)
               PARAMETER (IDOINV = 1)
               PARAMETER (N = 3)
               PARAMETER (LENGTA = (N * N + N) / 2)
         C
               REAL       DET(2), RCOND
               COMPLEX    A(LENGTA), WORK(N)
               INTEGER    INERT(3), IPIVOT(N), JOB
         C
               EXTERNAL   CHPCO, CHPDI
         C
         C     Initialize the array A to store the matrix A shown below.
         C
         C          1    1+2i  1+2i
         C     A = 1+2i   6   -2+6i
         C         1+2i -2+6i   11
         C
               DATA A / (1.0,0.0), (1.0,-2.0), (6.0,0.0),
              $         (1.0,-2.0), (6.0,-2.0), (11.0,0.0) /
         C
               PRINT 1000
               PRINT 1010, A(1), A(2), A(4)
               PRINT 1010, CONJG(A(2)), A(3), A(5)
               PRINT 1010, CONJG(A(4)), CONJG(A(5)), A(6)
               CALL CHPCO (A, N, IPIVOT, RCOND, WORK)
               PRINT 1020, RCOND
               IF ((RCOND + 1.0) .EQ. 1.0) THEN
                 PRINT 1030
               END IF
               JOB = IDOINR + IDODET + IDOINV
               CALL CHPDI (A, N, IPIVOT, DET, INERT, WORK, JOB)
               PRINT 1040, DET(1) * (10.0D0 ** DET(2))
               PRINT 1050, INERT
               PRINT 1060
               PRINT 1010, A(1), A(2), A(4)
               PRINT 1010, CONJG(A(2)), A(3), A(5)
               PRINT 1010, CONJG(A(4)), CONJG(A(5)), A(6)
         C
          1000 FORMAT (1X, 'A in full form:')
          1010 FORMAT (4(: 3X, '(', F5.1, ',', F5.1, ')'))
          1020 FORMAT (/1X, 'Reciprocal condition number of A:', F6.3)
          1030 FORMAT (1X, 'A may be singular to working precision.')
          1040 FORMAT (/1X, 'Determinant of A: ', F6.3)
          1050 FORMAT (1X, 'Inertia of A: <', I1, ',', I1, ',', I1, '>')
          1060 FORMAT (/1X, 'A**(-1):')
         C
               END
    
    SAMPLE OUTPUT
          A in full form:
            (  1.0,  0.0)   (  1.0, -2.0)   (  1.0, -2.0)
            (  1.0,  2.0)   (  6.0,  0.0)   (  6.0, -2.0)
            (  1.0,  2.0)   (  6.0,  2.0)   ( 11.0,  0.0)
    
          Reciprocal condition number of A: 0.001
    
          Determinant of A:  0.008
          Inertia of A: <3,0,0>
    
          A**(-1):
            ( 26.0,  0.0)   ( -1.0, 12.0)   ( -4.0, -2.0)
            ( -1.0,-12.0)   (  6.0,  0.0)   ( -1.0,  2.0)
            ( -4.0,  2.0)   ( -1.0, -2.0)   (  1.0,  0.0)
    
    
    
    


    Поиск по тексту MAN-ов: 




    Партнёры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2025 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру