NAME
dlags2 - compute 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0
B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0
)*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q
= ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A
and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV
), Q = ( CSQ SNQ ) (-SNU CSU ) (-SNV CSV ) (-SNQ CSQ ) Z'
denotes the transpose of Z
SYNOPSIS
SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
CSV, SNV, CSQ, SNQ )
LOGICAL UPPER
DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
SNU, SNV
#include <sunperf.h>
void dlags2(int upper, double a1, double a2, double a3, dou-
ble b1, double b2, double b3, double *csu, double
*snu, double *csv, double *snv, double *csq, dou-
ble *snq);
PURPOSE
DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
ARGUMENTS
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) DOUBLE PRECISION
A2 (input) DOUBLE PRECISION A3 (input)
DOUBLE PRECISION On entry, A1, A2 and A3 are ele-
ments of the input 2-by-2 upper (lower) triangular
matrix A.
B1 (input) DOUBLE PRECISION
B2 (input) DOUBLE PRECISION B3 (input)
DOUBLE PRECISION On entry, B1, B2 and B3 are ele-
ments of the input 2-by-2 upper (lower) triangular
matrix B.
CSU (output) DOUBLE PRECISION
SNU (output) DOUBLE PRECISION The desired
orthogonal matrix U.
CSV (output) DOUBLE PRECISION
SNV (output) DOUBLE PRECISION The desired
orthogonal matrix V.
CSQ (output) DOUBLE PRECISION
SNQ (output) DOUBLE PRECISION The desired
orthogonal matrix Q.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |