NAME
dstsv - compute the solution to a system of linear equations
A * X = B where A is a symmetric tridiagonal matrix
SYNOPSIS
SUBROUTINE DSTSV( N, L, D, SUBL, IPIV, INFO )
INTEGER INFO, N
DOUBLE PRECISION D( * )
DOUBLE PRECISION L( * ), SUBL( * )
#include <sunperf.h>
void dstsv(int n, double *l, double *d, double *subl, int
*info) ;
PURPOSE
DSTSV computes the solution to a system of linear equations
A * X = B where A is a symmetric tridiagonal matrix.
ARGUMENTS
N (input) INTEGER
The order of the matrix A. N >= 0.
L (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the n-1 subdiagonal elements of the tri-
diagonal matrix A. On exit, part of the factori-
zation of A.
D (input/output) DOUBLE PRECISION array, dimension
(N)
On entry, the n diagonal elements of the tridiago-
nal matrix A. On exit, the n diagonal elements of
the diagonal matrix D from the factorization of A.
SUBL (output) DOUBLE PRECISION array, dimension (N)
On exit, part of the factorization of A.
IPIV (output) INTEGER array, dimension (N)
On exit, the pivot indices of the factorization.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, D(k,k) is exactly zero. The
factorization has been completed, but the block
diagonal matrix D is exactly singular and division
by zero will occur if it is used to solve a system
of equations.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |