NAME
slaed5 - subroutine computes the I-th eigenvalue of a sym-
metric rank-one modification of a 2-by-2 diagonal matrix
diag( D ) + RHO The diagonal elements in the array D are
assumed to satisfy D(i) < D(j) for i < j
SYNOPSIS
SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
INTEGER I
REAL DLAM, RHO
REAL D( 2 ), DELTA( 2 ), Z( 2 )
#include <sunperf.h>
void slaed5(int i, float *d, float *sz, float *delta, float
srho, float *dlam) ;
PURPOSE
This subroutine computes the I-th eigenvalue of a symmetric
rank-one modification of a 2-by-2 diagonal matrix
We also assume RHO > 0 and that the Euclidean norm of the
vector Z is one.
ARGUMENTS
I (input) INTEGER
The index of the eigenvalue to be computed. I = 1
or I = 2.
D (input) REAL array, dimension (2)
The original eigenvalues. We assume D(1) < D(2).
Z (input) REAL array, dimension (2)
The components of the updating vector.
DELTA (output) REAL array, dimension (2)
The vector DELTA contains the information neces-
sary to construct the eigenvectors.
RHO (input) REAL
The scalar in the symmetric updating formula.
DLAM (output) REAL
The computed lambda_I, the I-th updated eigen-
value.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |