NAME
slags2 - compute 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0
B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0
)*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q
= ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A
and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV
), Q = ( CSQ SNQ ) (-SNU CSU ) (-SNV CSV ) (-SNQ CSQ ) Z'
denotes the transpose of Z
SYNOPSIS
SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
CSV, SNV, CSQ, SNQ )
LOGICAL UPPER
REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV
#include <sunperf.h>
void slags2(int upper, float a1, float a2, float a3, float
b1, float b2, float b3, float *csu, float *snu,
float *csv, float *snv, float *csq, float *snq);
PURPOSE
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
that if ( UPPER ) then
ARGUMENTS
UPPER (input) LOGICAL
= .TRUE.: the input matrices A and B are upper
triangular.
= .FALSE.: the input matrices A and B are lower
triangular.
A1 (input) REAL
A2 (input) REAL A3 (input) REAL On
entry, A1, A2 and A3 are elements of the input 2-
by-2 upper (lower) triangular matrix A.
B1 (input) REAL
B2 (input) REAL B3 (input) REAL On
entry, B1, B2 and B3 are elements of the input 2-
by-2 upper (lower) triangular matrix B.
CSU (output) REAL
SNU (output) REAL The desired orthogonal
matrix U.
CSV (output) REAL
SNV (output) REAL The desired orthogonal
matrix V.
CSQ (output) REAL
SNQ (output) REAL The desired orthogonal
matrix Q.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |