NAME
slasq2 - SLASQ2 computes the singular values of a real N-
by-N unreduced bidiagonal matrix with squared diagonal ele-
ments in Q and squared off-diagonal elements in E
SYNOPSIS
SUBROUTINE SLASQ2( M, Q, E, QQ, EE, EPS, TOL2, SMALL2, SUP,
KEND, INFO )
INTEGER INFO, KEND, M
REAL EPS, SMALL2, SUP, TOL2
REAL E( * ), EE( * ), Q( * ), QQ( * )
#include <sunperf.h>
void slasq2(int m, float *q, float *e, float *qq, float *ee,
float eps, float tol2, float small2, float *sup,
int *kend, int *info) ;
PURPOSE
SLASQ2 computes the singular values of a real N-by-N unre-
duced bidiagonal matrix with squared diagonal elements in Q
and squared off-diagonal elements in E. The singular values
are computed to relative accuracy TOL, barring
over/underflow or denormalization.
ARGUMENTS
M (input) INTEGER
The number of rows and columns in the matrix. M >=
0.
Q (output) REAL array, dimension (M)
On normal exit, contains the squared singular
values.
E (workspace) REAL array, dimension (M)
QQ (input/output) REAL array, dimension (M)
On entry, QQ contains the squared diagonal ele-
ments of the bidiagonal matrix whose SVD is
desired. On exit, QQ is overwritten.
EE (input/output) REAL array, dimension (M)
On entry, EE(1:N-1) contains the squared off-
diagonal elements of the bidiagonal matrix whose
SVD is desired. On exit, EE is overwritten.
EPS (input) REAL
Machine epsilon.
TOL2 (input) REAL
Desired relative accuracy of computed eigenvalues
as defined in SLASQ1.
SMALL2 (input) REAL
A threshold value as defined in SLASQ1.
SUP (input/output) REAL
Upper bound for the smallest eigenvalue.
KEND (input/output) INTEGER
Index where minimum d occurs.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
> 0: if INFO = i, the algorithm did not converge;
i specifies how many superdiagonals did not con-
verge.
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |