NAME
ztbrfs - provide error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular band coefficient matrix
SYNOPSIS
SUBROUTINE ZTBRFS( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, KD, LDAB, LDB, LDX, N, NRHS
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
COMPLEX*16 AB( LDAB, * ), B( LDB, * ), WORK( * ), X( LDX, *
)
#include <sunperf.h>
void ztbrfs(char uplo, char trans, char diag, int n, int kd,
int nrhs, doublecomplex *zab, int ldab, doublecom-
plex *zb, int ldb, doublecomplex *zx, int ldx,
double *ferr, double *berr, int *info) ;
PURPOSE
ZTBRFS provides error bounds and backward error estimates
for the solution to a system of linear equations with a tri-
angular band coefficient matrix.
The solution matrix X must be computed by ZTBTRS or some
other means before entering this routine. ZTBRFS does not
do iterative refinement because doing so cannot improve the
backward error.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
KD (input) INTEGER
The number of superdiagonals or subdiagonals of
the triangular band matrix A. KD >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number
of columns of the matrices B and X. NRHS >= 0.
AB (input) COMPLEX*16 array, dimension (LDAB,N)
The upper or lower triangular band matrix A,
stored in the first kd+1 rows of the array. The
j-th column of A is stored in the j-th column of
the array AB as follows: if UPLO = 'U',
AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if
UPLO = 'L', AB(1+i-j,j) = A(i,j) for
j<=i<=min(n,j+kd). If DIAG = 'U', the diagonal
elements of A are not referenced and are assumed
to be 1.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >=
KD+1.
B (input) COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >=
max(1,N).
X (input) COMPLEX*16 array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >=
max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solu-
tion vector X(j) (the j-th column of the solution
matrix X). If XTRUE is the true solution
corresponding to X(j), FERR(j) is an estimated
upper bound for the magnitude of the largest ele-
ment in (X(j) - XTRUE) divided by the magnitude of
the largest element in X(j). The estimate is as
reliable as the estimate for RCOND, and is almost
always a slight overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each
solution vector X(j) (i.e., the smallest relative
change in any element of A or B that makes X(j) an
exact solution).
WORK (workspace) COMPLEX*16 array, dimension (2*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an ille-
gal value
|
Закладки на сайте Проследить за страницей |
Created 1996-2025 by Maxim Chirkov Добавить, Поддержать, Вебмастеру |