traceroute
tracks the route packets take across an IP network on their
way to a given host. It utilizes the IP protocol's time to live (TTL) field
and attempts to elicit an ICMP TIME_EXCEEDED response from each gateway
along the path to the host.
traceroute6
equivalents to
traceroute-6 tracert
equivalents to
traceroute-I tcptraceroute
equivalents to
traceroute-T
The only required parameter is the name or IP address of the
destination
host .
This parameter can be followed by the
size
of the
probing packet sent to that host (40 by default). Varying the
size of the packet in conjunction with the
-F
parameter can be used to obtain information about the MTU of
individual network hops. (The size parameter is useless for TCP probes).
This program attempts to trace the route an IP packet would follow to some
internet host by launching a probe
packets with a small ttl (time to live) then listening for an
ICMP "time exceeded" reply from a gateway. We start our probes
with a ttl of one and increase by one until we get an ICMP "port
unreachable" (or TCP reset), which means we got to "host", or hit a max (which
defaults to 30 hops). Three (by default) probes are sent at each ttl setting
and a line is printed showing the ttl, address of the gateway and
round trip time of each probe. If the probe answers come from
different gateways, the address of each responding system will
be printed. If there is no response within a 5.0 (default) seconds,
a "*" is printed for that probe.
After the time some additional annotation can be printed:
!H,
!N,
or
!P
(host, network or protocol unreachable),
!S
(source route failed),
!F
(fragmentation needed),
!X
(communication administratively prohibited),
!V
(host precedence violation),
!C
(precedence cutoff in effect), or
!<num>
(ICMP unreachable code <num>).
If almost all the probes result in some kind of unreachable, traceroute
will give up and exit.
We don't want the destination host to process the UDP probe packets,
so the destination port is set to an unlikely value (you can change it with the
-p
flag). There is no such a problem for ICMP or TCP tracerouting (for TCP we
use half-open technique, which prevents our probes to be seen by applications
on the destination host).
In the modern network environment the traditional traceroute methods
can not be always applicable, because of widespread use of firewalls.
Such firewalls filter the "unlikely" UDP ports, or even ICMP echoes.
To solve this, some additional tracerouting methods are implemented
(including tcp), see
LIST OF AVAILABLE METHODS
below. Such methods try to use particular protocol
and source/destination port, in order to bypass firewalls (to be seen
by firewalls just as a start of allowed type of a network session).
OPTIONS
--help
Print help info and exit.
-4, -6
Explicitly force IPv4 or IPv6 traceouting. By default, the program
will try to resolve the name given, and choose the appropriate
protocol automatically. If resolving a host name returns both
IPv4 and IPv6 addresses,
traceroute
will use IPv4.
-I
Use ICMP ECHO for probes
-T
Use TCP SYN for probes
-d
Enable socket level debugging (when the Linux kernel supports it)
-F
Set the "Don't Fragment" bit. This tells intermediate routers not
to fragment the packet when they find it's too big for a network
hop's MTU.
-f first_ttl
Specifies with what TTL to start. Defaults to 1.
-g gateway
Tells traceroute to add an IP source routing option to the outgoing
packet that tells the network to route the packet through the
specified
gateway.
Not very useful, because most routers have disabled source routing
for security reasons.
-i interface
Specifies the interface through which
traceroute
should send packets. By default, the interface is selected
according to the routing table.
-m max_ttl
Specifies the maximum number of hops (max time-to-live value)
traceroute
will probe. The default is 30.
-N squeries
Specifies the number of probe packets sent out simultaneously.
Sending several probes concurrently can speed up
traceroute
considerably. The default value is 16.
Note that some routers and hosts can use ICMP rate throttling. In such
a situation specifying too large number can lead to loss of some responses.
-n
Do not try to map IP addresses to host names when displaying them.
-p port
For UDP tracing, specifies the destination port base
traceroute
will use (the destination port number will be incremented by each probe).
For ICMP tracing, specifies the initial icmp sequence value (incremented
by each probe too).
For TCP specifies just the (constant) destination
port to connect.
-t tos
For IPv4, set the Type of Service (TOS) and Precedence value. Useful values
are 16 (low delay) and 8 (high throughput). Note that in order to use
some TOS precendence values, you have to be super user.
For IPv6, set the Traffic Control value.
-w waittime
Set the time (in seconds) to wait for a response to a probe (default 5.0 sec).
-q nqueries
Sets the number of probe packets per hop. The default is 3.
-r
Bypass the normal routing tables and send directly to a host on
an attached network. If the host is not on a directly-attached
network, an error is returned. This option can be used to ping a
local host through an interface that has no route through it.
-s source_addr
Chooses an alternative source address. Note that you must select the
address of one of the interfaces.
By default, the address of the outgoing interface is used.
-z sendwait
Minimal time interval between probes (default 0).
If the value is more than 10, then it specifies a number in milliseconds,
else it is a number of seconds (float point values allowed too).
Useful when some routers use rate-limit for icmp messages.
-A
Perform AS path lookups in routing registries and print results
directly after the corresponding addresses.
-V
Print the version and exit.
There is a couple of additional options, intended for an advanced usage
(another trace methods etc.):
--sport=port
Chooses the source port to use. Implies
-N 1.
Normally source ports (if applicable) are chosen by the system.
-M module
Use specified module for traceroute operations. Default traditional udp method
has name
default,
icmp
(-I)
and tcp
(-T)
have names
icmp
and
tcp
respectively.
Module-specific options can be passed by
-O .
Most modules have their simple shortcuts,
(-I means -M icmp,
etc).
-O option
Specifies some module option. Several options are separated by comma (or use several
-O
on cmdline).
Each module have its own specific options, or do not have them at all.
To print info about available options, use
-O help
after the choosing of a module.
-U
Use UDP to particular destination port for tracerouting (instead of increasing
the port per each probe). Default port is 53 (dns).
-UL
Use UDPLITE for tracerouting (default port is 53).
-P protocol
Use raw packet of specified protocol for tracerouting. Default protocol is
253 (rfc3692).
LIST OF AVAILABLE METHODS
In general, a particular traceroute module have to be chosen by
-M name,
but most of the methods have their simple cmdline switches
(see it after the module name, if present).
default
The traditional, ancient method of tracerouting. Used by default.
Probe packets are udp datagrams with so-called "unlikely" destination ports.
The "unlikely" port of the first probe is 33434, then for each next probe
it is incremented by one. Since the ports are expected to be unused,
the destination host normally returns "icmp unreach port" as a final response.
(Nobody knows what happens when some application listens for such ports,
though).
This method is allowed for unprivileged users.
icmp -I
Most usual for now method, which use icmp echo packets for probes.
If you can ping(8) the destination host, icmp tracerouting is applicable
as well.
tcp -T
Well-known modern method, intended to bypass firewalls.
Uses the constant destination port (default is 80, http).
If some filters are present in the network path, then most probably
any "unlikely" udp ports (as for
default
method) or even icmp echoes (as for
icmp)
are filtered, and whole tracerouting will stop just at such a firewall.
To bypass a network filter, we have to use only allowed protocol/port
combination. If we trace for some, say, mailserver, then more likely
-T -p 25
can reach it, even when
-I
can not.
This method uses well-known "half-open technique", which prevents
applications on the destination host from seeing our probes at all.
Normally, a tcp syn is sent. For non-listened ports we receive tcp reset,
and all is done. For active listening ports we receive tcp syn+ack, but
answer by tcp reset (instead of expected tcp ack), this way the remote tcp
session is dropped even without any notice to the application.
There is a couple of options for
tcp
method:
syn,ack,fin,rst,psh,urg,ece,cwr
Sets specified tcp flags for probe packet, in any combination.
flags=num
Sets flags field in the tcp header exactly to
num.
ecn
Send syn packet with tcp flags ECE and CWR (for Explicit Congestion
Notification, rfc3168)
sack,timestamps,window_scaling
Use the correspond tcp header option in the outgoing probe packet.
sysctl
Use current sysctl
(/proc/sys/net/*)
setting for the tcp header options above and
ecn.
Always set by default, if nothing else specified.
mss=num
Use value of
num
for maxseg tcp header option (when
syn).
Default options is
syn,sysctl.
tcpconn
An initial implementation of tcp method, simple using connect(2) call,
which does full tcp session opening. Not recommended for normal use, because
a destination application is always affected (and can be confused).
udp -U
Use udp datagram with constant destination port (default 53, dns).
Intended to bypass firewall as well.
Note, that unlike in
tcp
method, the correspond application on the destination host
always
receive our probes (with random data), and most likely can be confused
by them. Most cases it even not respond for our packets, hence we will never
see the final hop in the trace. (Fortunately, it seems that at least
dns servers replies something angry).
This method is allowed for unprivileged users.
udplite -UL
Use udplite datagram for probes (with constant destination port,
default 53).
This method is allowed for unprivileged users.
Options:
coverage=num
Set udplite send coverage to
num.
raw -P proto
Send raw packet of protocol
proto.
No any protocol-specific headers are used, just IP header at all.
Implies
-N 1.
Options:
protocol=proto
Use IP protocol
proto
(default 253).
NOTES
To speed up work, normally several probes are sent simultaneously.
On the other hand, it creates some "storm of packages", especially
in the reply direction. Routers can throttle the rate of icmp responses,
and some of replies can be lost. To avoid this, decrease the number
of simultaneous probes, or even set it to 1 (like in initial traceroute
implementation), i.e.
-N 1
The final (target) host can drop some of the simultaneous probes,
and even answer to the latest ones only. It can lead to extra
"looks like expired" hops near the final hop. We use a smart algorithm
to auto-detect such a situation, but if it cannot help in your case, just use
-N 1
too.
For even greater stability you can slow down the program's work by
-z
option, for example use
-z 0.5
for half-second pause between probes.
If some hops report nothing for every method, the last chance to obtain
something is to use
ping -R
command (IPv4, and for nearest 8 hops only).